零下50℃,他们让冰发生了奇妙变化

如题所述

第1个回答  2022-08-18

一段冰柱可否呈现出堪比撑杆的弯曲程度?乍听之下不可能。在人们的常识中,冰是一种脆性的易碎物质,没有弹性、无法弯折。然而在微观尺度下,科学家打破了这一固有认识。

近日,浙江大学光电科学与工程学院童利民教授团队联合浙大交叉力学中心和美国加州大学伯克利分校的科研人员, 在零下50 环境中,制备出了高质量冰单晶微纳光纤。其既能够灵活弯曲,又可以低损耗传输光,在性能上与玻璃光纤相似。 7月9日,相关研究成果发表于《科学》杂志。

光纤作为一种将光约束和自由传输的功能结构,是目前光场操控最有效的工具之一。

常规的玻璃光纤,主要成分为氧化硅(石英砂),是地壳中含量最丰富的材料之一,在光传输中具有宽带低损耗等优异特性。实际上,在地球及很多地外星球表面,比沙更普遍的物质是冰或液态水, 童利民团队尝试用冰来制备光纤,历时四年得以实现。

论文第一作者、浙大光电学院博士生许培臻补充道,粗糙地解释的话,即一瓶水结冰后,让瓶子形变程度达到0.3%,这块冰就会碎。这也可解释雪崩、冰川滑移和海冰碎裂等自然现象的产生。

“微纳光纤的光场调控能力,很大程度上取决于光纤材料的结构形态及其光场响应特性。在这项研究中,冰单晶制备是关键的第一步,要使冰晶的分子排列整齐。”童利民介绍,可类比到整面玻璃易碎、但细长的玻璃光纤具有弹性的现象,减小结构尺寸、提高结构均匀度可以显著提高材料力学性能。

本次研究中,团队自行搭建了生长装置,在大量实验基础上,改进了已有的电场诱导冰晶制备方法,即在低温高压电场中,加之一定的湿度条件,通过静电促使水分子朝电场方向运动,改变其无序的运动状态,从而诱发单晶生长。

“最终在零下50 的环境,团队成功制备出直径在800纳米到10微米的冰单晶微纳光纤。”童利民表示,团队在冷冻电镜下验证了这些冰单晶微纳光纤具有很好的直径均匀性和表面光滑度。

“单是结构均匀、表面光滑还不够,若要尽可能适应场景需求,需要对冰微纳光纤的弹性应变性能进行充分 探索 。”童利民介绍,虽然学界曾有理论计算预测过,理想情况下,冰的弹性应变极限有可能大于10%,但是真实冰晶中由于存在结构缺陷,能够达到的应变值远低于理论极限。

为 探索 其力学性能,团队利用新发明的低温微纳操控和转移技术,在多个环境下作了测试。 最终在零下150 的环境中,团队制备的冰微纳光纤获得了10.9%的弹性应变,接近冰的理论弹性极限。

据介绍,将标准光纤直径减小到波长甚至亚波长量级,成为微纳光纤,提升或引入光场在空间约束、近场相互作用、表面增强、波导色散及光动量效应等方面的调控能力,在近场耦合、光学传感和量子光学等方面具有独特优势,是目前光纤领域的前沿研究方向之一。

“由于材料对光场的响应特性取决于其组成元素、分子结构及其排列方式。研究团队预测,由水分子规则排列而成的冰单晶微纳光纤,在光的操控方面具有潜在优势。”童利民说。

为了测试其光学特性,团队利用其此前发明的近场耦合输入技术,在可见光波段实现了冰微纳光纤的宽带光传输,传输损耗低达0.2dB/cm,与目前高质量平面波导相当,这种光操控能力为微纳光纤用于低温光学导波与传感提供了新的技术可能。

“由于理想冰单晶在可见光波段具有极低的吸收和散射特性,进一步优化制备和测试条件,将有可能在冰微纳光纤实现超低损耗光传输。”童利民认为,该项研究结果将拓展人们对冰的认知边界,激发人们开展冰基光纤在光传输、光传感、冰物理学等方面的研究,以及发展适用于特殊环境的微纳尺度冰基技术。