在正方形ABCD的对角线AC上截取一点E,使CE=CD.然后以ED所在的直线为对称轴作△ADE的轴对称图形△FDE,DF

在正方形ABCD的对角线AC上截取一点E,使CE=CD.然后以ED所在的直线为对称轴作△ADE的轴对称图形△FDE,DF与AC交于G点.(1)求证:四边形CDEF为等腰梯形.(2)将正方形ABCD拉成菱形,如继续按(1)中方法作图,让E点还在对角线AC上,且不与A、C两顶点重合,问(1)中结论是否继续成立?如成立,试说明理由.

第1个回答  2015-01-21
(1)证明:∵CE=CD,
∴∠CED=∠CDE,
∵△ADE与△FDE关于ED所在的直线对称,
∴△ADE≌△FDE,
∴AE=EF,∠AED=∠FED,
又∵∠AED+∠CED=180°,
∴∠FED+∠CDE=180°,
∴EF∥CD且EF≠CD,
∴四边形CDEF为梯形,
∵AB∥CD,∠BAC=∠DAC,AD=CD,
∴∠BAC=∠FEC,EC=AD,
∴∠EAD=∠FEC,
∴△AED≌△EFC(SAS),
∴ED=FC,
∴四边形CDEF为等腰梯形;

(2)解:四边形CDEF为等腰梯形.理由如下:
∵CE=CD,
∴∠CED=∠CDE,
∵△ADE与△FDE关于ED所在的直线对称,
∴△ADE≌△FDE,
∴AE=EF,∠AED=∠FED,
又∵∠AED+∠CED=180°,
∴∠FED+∠CDE=180°,
∴EF∥CD且EF≠CD,
∴四边形CDEF为梯形,
∵AB∥CD,∠BAC=∠DAC,AD=CD,
∴∠BAC=∠FEC,EC=AD,
∴∠EAD=∠FEC,
∴△AED≌△EFC(SAS),
∴ED=FC,
∴四边形CDEF为等腰梯形;
相似回答
大家正在搜