如何在教学中渗透数学思想的困惑研讨小结

如题所述

第1个回答  2015-11-22
一、在数学概念的教学中,渗透数学思想方法
数学概念的形成过程往往是通过学生熟知的一些生产、生活的实例、实物、模型等,向学生提供丰富的感性材料,让学生观察对象的共同点,分析、对比、归纳、抽象概括出对象的本质属性,从而形成概念。因此,概念教学不应只是简单的给出定义,而要引导学生感受及领悟隐含于概念形成之中的数学思想。比如在七年级学习“相反数”这个概念时,通过分析3和-3这两个数的特点,引导学生自行得出相反数的概念:“只有符号不同的两个数”。为了加深理解,把这两个数画在数轴上,也可以这样定义相反数:在数轴上原点的两旁,离开原点的距离相等的两个点所表示的两个数互为相反数。这样,通过数形结合的数学思想来比较教学,学生也更容易理解。又如:在八年级学习“矩形”的定义
时,通过观察矩形与平行四边形的共同点,分析、对比引导学生自行归纳出矩形的概念:“有一个角是直角的平行四边形”。同时为了加深概念的理解,用四段木条做一个平行四边形的活动木框,将其直立在地面上轻轻地推动点D,可以发现,角的大小改变了,但仍然保持平行四边形的形状.因此可以得出:平行四边形 + 一个直角 = 矩形

在数学概念的教学中借助图形来认识概念,必须从图形中找出规律性的东西,这样便把感性认识用数学语言抽象到理性认识,才能使学生正确地理解概念,牢固地掌握概念。因此数形结合的数学思想,不仅能够提高学生数形转化能力,还可以提高学生迁移思维能力。华罗庚曾说:“数缺形时少直觉,形缺数时难入微。”通过深入的观察、联想,由形思数,由数想形,利用图形的直观诱发直觉。当然,并不是所有的数学概念都能用图形来帮助理解的,对于具体问题应作具体分析。

二、在教学重、难点知识中,培养数学思想方法
作为重点和难点,它们的意义和难度是不言而喻的,但如何降低学习的难度,使学生更好地掌握运用它们呢?因此,在重点与难点知识的教学中不要过早给出结论,而应引导学生参与知识点的探索、发现、推导过程。搞清其中的因果关系,领悟它与其它知识的关系,让学生亲身体验应用到的数学思想和方法。
如九年级:在同一个圆中,一条弧所对的任意一个圆周角的大小都等于该弧所对的圆心角的一半。为了验证这个猜想,可将圆对折,使折痕经过圆心和圆周角的顶点,这时可能出现三种情况:
⑴折痕是圆周角的一条边,⑵折痕在圆周角的内部,⑶折痕在圆周角的外部。
进行这一性质的验证时,引导学生分三种情形来进行分析、讨论、探索,从而掌握这一性质的推导过程,让学生通过分类的数学思想更深层地了解它的本质和一般性。

又如九年级“一元二次方程的根的情况可以分成三种情况:
(1)方程有两个不相等的实数根 (2) 方程有两个相等的实数根 (3) 方程没有实数根 而方程根的情况下又可以拓展到抛物线)
(3)抛物线与X轴没有交点

通过对它们进行分类可以让学生较容易地接受知识,从而更好地掌握和运用。利用分类讨论的数学思想可以帮助学生对问题进行全面而且严谨的思考、分析、讨论和论证,使解题途径和方法达到完美和合理,
因此在一些重点、难点的知识的教学中,培养分类思想是十分必要的。著名数学家华罗庚说过:“学习数学最好到数学家的纸篓里找材料不要只看书上的结论” 三、在数学解题教学中,体验数学思想方法
数学题形不计其数,问题又可变式发散,因此习题题量就千千万万,但是蕴涵在问题中的数学思想方法总是永恒不变的,它是数学的精髓,是解决问题的有效手段,是制胜的法宝。因此在数学解题教学中,不能只平铺直叙地罗列解法,而应着重概括总结数学思想方法在解题中的指导作用。
转化的思想是一种重要的数学思想,是将陌生的或不易解决的问题,设法通过某种手段转化为我们所熟悉的或已经解决的,或易于解决的问题,从而使原问题获得解决的一种思想方法.这种数学思想体现在数学解题中,就是将原问题进行变形,使之转化为我们所熟悉的或已解决的或易于解决的问题,就这一点来说,解题过程就是不断转化的过程。