高数函数连续性问题

讨论函数
的连续性,若有间断点,判别其类型
不是x ,而是n趋于无穷!!!!!

当x趋近于0+时
F(x)=lim(n→∞)(1-x^2n)÷(1+x^2n)x趋近于1÷1*0+=+∞
当x趋近于0-时
F(x)=lim(n→∞)(1-x^2n)÷(1+x^2n)x趋近于1÷1*0-=-∞
x在0点左右极限不存在,为第二类间断点

很高兴为您解答,祝你学习进步!
【梦华幻斗】团队为您答题。有不明白的可以追问!
如果您认可我的回答。请点击下面的【选为满意回答】按钮,同时可以【赞同】一下,谢谢!追问

不好意思,题有点错,不是x ,而是n趋于无穷!!!!!

追答

看错了~~抱歉解:∵y=lim(x->∞){[(1-x^2n)/(1+x^2n)]x}
∴当│x│1时,y=-x
∵lim(x->1+)y=lim(x->1+)(-x)=-1
lim(x->1-)y=lim(x->1-)(x)=1
∴lim(x->1+)y≠lim(x->1-)y,即x=1是第一类间断点
∵lim(x->-1+)y=lim(x->-1+)(x)=-1
lim(x->-1-)y=lim(x->-1-)(-x)=1
∴lim(x->-1+)y≠lim(x->-1-)y,即x=-1是第一类间断点
故此函数只有两个是第一类间断点,它们分别是x=1与x=-1。

温馨提示:答案为网友推荐,仅供参考
相似回答
大家正在搜