复数i的平方是-1。
i是虚数的单位,1777年瑞士数学家欧拉(或译为欧勒)开始使用符号i=√(-1)表示虚数的单位。而后人将虚数和实数有机地结合起来,写成a+bi形式。
(a、b为实数,a等于0时叫纯虚数,不等于0时叫非纯虚数,b等于0时就叫实数),称为复数,通常,我们用符号C来表示复数集,用符号R来表示实数集。
把形如z=a+bi(a,b均为实数)的数称为复数,其中a称为实部,b称为虚部,i称为虚数单位。当z的虚部等于零时,常称z为实数;当z的虚部不等于零时,实部等于零时,常称z为纯虚数。复数域是实数域的代数闭包,即任何复系数多项式在复数域中总有根。
复数是由意大利米兰学者卡当在十六世纪首次引入,经过达朗贝尔、棣莫弗、欧拉、高斯等人的工作,此概念逐渐为数学家所接受。