怎么证明f(x)平方的定积分≥f(x)定积分的平方

如题所述

直接用柯西不等式:(∫(a,b)f(x)g(x)dx)²≤∫(a,b)f²(x)dx×∫(a,b)g²(x)dx,令g(x)=1,就有∫(a,b)f(x)dx)²≤(b-a)∫(a,b)f²(x)dx。

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

早期概念

十七世纪伽俐略在《两门新科学》一书中,几乎全部包含函数或称为变量关系的这一概念,用文字和比例的语言表达函数的关系。

1637年前后笛卡尔在他的解析几何中,已注意到一个变量对另一个变量的依赖关系,但因当时尚未意识到要提炼函数概念,因此直到17世纪后期牛顿、莱布尼兹建立微积分时还没有人明确函数的一般意义,大部分函数是被当作曲线来研究的。

1673年,莱布尼兹首次使用“function”(函数)表示“幂”,后来他用该词表示曲线上点的横坐标、纵坐标、切线长等曲线上点的有关几何量。与此同时,牛顿在微积分的讨论中,使用 “流量”来表示变量间的关系。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2012-11-21
直接用柯西不等式:(∫(a,b)f(x)g(x)dx)²≤∫(a,b)f²(x)dx×∫(a,b)g²(x)dx,令g(x)=1,就有∫(a,b)f(x)dx)²≤(b-a)∫(a,b)f²(x)dx追问

能不用柯西么?。。〒_〒

追答

这是最简单的证法。如果不用柯西不等式,证明会比较复杂。

追问

可是我们木有讲过柯西。。。

追答

设k为任意实数,因为f(x)在区间[a,b]上可积,所以[f(x)+k]²在区间[a,b]上可积。由于[f(x)+k]²≥0,所以∫(a,b)[f(x)+k]²dx≥0,即∫(a,b)f²(x)dx+2k∫(a,b)f(x)dx+k²(b-a)≥0长度已到

本回答被提问者采纳