电力变压器的零线

电力变压器零线接地吗?
我们用的220V零线是从变压器直接出来的吗?
还是变压器的零线接地,然后我们再从地引出线来接在电器上呢?
另外,地线和零线有什么区别呢?
地线的作用到底是什么呢?假若没有地线会出现什么后果呢?
还有假若零线不接地,人站在地上摸到火线时,不就不会有电流
通过人身体了吗?那零线为什么还要接地呢?

请参考下面文章也许对你有帮助

技术文章

第一节 低压接地方式的概念
一、接地方式的提出
为了确保低压配电系统及电气设备、用电器具的安全使用,必须采取适当措施,防止使用人员发生电击危险及电气设备、用电器具烧毁。接地是常用的一种方法,因为大地是可导电的地层,其任何一点的电位通常取零,即零电位(当单相接地时,离接地点20m及以外视为零电位)。
对电气设备、用电器具而言,如果将其金属外壳与大地连接,这时金属外壳就接近零电位。即使在故障情况下,如发生电气设备因绝缘破坏造成碰壳短路,由于金属外壳已与大地作良好的电气连接,则金属外壳与大地的电位差变低,若人与之接触,通过人体的电流就也小,提高了间接触电的安全性。
对低压配电系统而言,较多将配变中性点接地(称为工作接地)。从电气安全角度来看,在一定的条件下,可与电气设备的接地共同作用。当接地故障时,产生的电流可使配电系统中的保护设备在适当时间内动作,切断电源,用以保证安全。
由于电气设备及用电器具的金属外壳可以直接接地,也可以通过导体接到配电系统已接地的中性点上,配电系统可以直接接地或不接地或通过阻抗接地,这几种接地组合即称为低压配电系统接地方式。
二、接地方式的基本组成
接地方式的组成部分可分为电气设备和配电系统两部分。
1.电气设备的接地部分
(1)接地体:与大地紧密接触并与大地形成电气连接的一个或一组导体。
(2)外露可导电部分:电气设备能触及的可导电部分。正常时不带电,故障时可能带电,通常为电气设备的金属外壳。
(3)主接地端子板:一个建筑物或部分建筑物内各种接地(如工作接地、保护接地)的端子和等电位连接线的端子的组合。如成排排列,则称为主接地端子排。
(4)保护线(PE):将上述外露可导电部分,主接地端子板、接地体以及电源接地点(或人工接地点)任何部分作电气连接的导体。对于连接多个外露可导电部分的导体称为保护干线。
(5)接地线:将主接地端子板或将外露可导电部分直接接到接地体的保护线。对于连接多个接地端子板的接地线称为接地干线。
(6)等电位连接:指各外露可导电部分和装置外导电部分的电位实质上相等的电气连接。
2.配电系统的接地部分
(1)相线(L)。输送电能的导体,正常情况下不接地。
(2)中性线(N)。与系统中性点相连,并能起输送电能作用的导体。
(3)保护中性线(PEN)。兼有保护线和中性线作用的导体。
(4)电源接地点。将电源可以接地的一点(通常是中性点)进行接地。
三、接地方式的分类
我国配电系统的接地方式已使用IEC规定,其分类仍然是以配电系统和电气设备的接地组合来分,一般分为TN、TT、IT系统等。上述字母表示的含义:第一个字母表示电源接地点对地的关系。其中T表示直接接地;I表示不接地或通过阻抗接地。第二个字母表示电气设备的外露可导电部分与地关系。其中T表示与电源接地点无连接的单独直接接地;N表示直接与电源系统接地点或与该点引出的导体连接。
根据中性线与保护线是否合并的情况,TN系统又分为TN-C、TN-S及TN-C-S系统。
TN-C系统:保护线与中性线合并为PEN线。
TN-S系统:保护线与中性线分开。
TN-C-S系统:在靠近电源侧一段的保护线和中性线合并为PEN线,从某点以后分为保护线和中性线。

第二节 各种接地方式的应用范围

在低压配电系统中,常将电气设备的外露可导电部分接地,进行间接触电的防护。
一、 TN系统
在TN系统中,所有电气设备的外露可导电部分均接到保护线上,并与电源的接地点相连,这个接地点通常是配电系统的中性点。
TN系统,称作保护接零。当故障使电气设备金属外壳带时,形成相线和零线短路,回路电阻小,电流大,能使熔丝迅速熔断或保护装置动作切断电源。
1.TN一C系统
该系统中保护线与中性线合并为PEN线,具有简单、经济的优点。当发生接地短路故障时,故障电流大,可使电流保护装置动作,切断电源。
该系统对于单相负荷及三相不平衡负荷的线路,PEN线总有电流流过,其产生的压降,将会呈现在电气设备的金属外壳上,对敏感性电子设备不利。此外,PEN线上微弱的电流在危险的环境中可能引起爆炸。所以有爆炸危险环境不能使用TN-C系统,。
2.TN-S系统
该系统中保护线和中性线分开,系统造价略贵。除具有TN-C系统的优点外,由于正常时PE线不通过负荷电流,故与PE线相连的电气设备金属外壳在正常运行时不带电,所以适用于数据处理和精密电子仪器设备的供电,也可用于爆炸危险环境中。在民用建筑内部、家用电器等都有单独接地触点的插头。采用TN-S供电既方便又安全。
3.TN--C一S系统
该系统PEN线自A点起分开为保护线(PE)和中性线(N)。分开以后N线应对地绝缘。为防止PE线与N线混淆,应分别给PE线和PEN线涂上黄绿相间的色标,N线涂以浅蓝色色标。此外,自分开后,PE线不能再与N线再合并。
TN-C-S系统是一个广泛采用的配电系统,无论在工矿企业还是在民用建筑中,其线路结构简单,又能保证一定安全水平。
二、T一T系统
在T-T系统中,其配电系统部分有一个直接接地点,一般是变压器中性点。其电气设备的金属外壳用单独的接地捧接地,与电源在接地上无电气联系,称为保护接地,适用于对电位敏感的数据处理设备和精密电子设备的供电。
三、IT系统
IT系统的电源不接地或通过阻抗接地,电气设备外露可导电部分可直接接地或通过保护线接到电源的接地体上,这也是保护接地。
由于该系统出现第一次故障时故障电流小,电气设备金属外壳不会产生危险性的接触电压,因此可以不切断电源,使电气设备继续运行,并可通过报警装置及检查消除故障。
四、保护接地范围
无论何种配电系统接地方式,下列电气设备和用电器具的外露可导电部分均应通过保护线(PE)接地(如TT、IT系统)或接到中性线上(TN系统)。
(l)变压器、电动机、电器、手握式及移动式电器。
(2)电力设备的传动装置。
(3)配电装置的金属构架、配电柜及保护控制屏的框架。
(4)配电线的金属保护管、开关金属接线盒等。

第三节接地体的接地电阻

一、概念
接地体:埋入地中并直接与大地接触的金属导体,称为接地体。当作接地体用的直接与大地接触的金属构件、金属管、钢筋混凝土建筑物的基础、金属管道等设备称为自然接地体。
接地电阻:接地体或自然接地体的对地电阻和接地引线电阻的总和称为接地体的接地电阻。
二、接地体
一般情况下,当能确保接地的连续可靠前提下,且接地电阻符合要求时,应充分利用自然接地体。
变配电所的接地装置,除了利用自然接地体外,还应敷设人工接地体。
在利用自然接地体时,应注意接地体的可靠性,并注意某些自然接地体的变化(如自来水系统)使接地体可靠性受到影响。但是,可燃液体或气体、供暖系统等管道禁止作接地体。
人工接地体可采用水平敷设的圆钢、扁钢,垂直敷设的角钢、钢管、圆钢,也可采用金属接地板。接地体应作镀锌等防腐处理。
三、接地电阻
配电系统电源中性点接地电阻一般应小于4W,但当配电变压器容量不大于 10OkV· A时,接地电阻可不大于 10 W 。
对于TN-C系统,保护中性线的重复接地电阻不大于10 W 。当变压器容量不大于 100kV· A时,重复接地不少于 3处时,允许接地电阻不大于30 W。
对于TT系统,当设备绝缘损坏发生单相接地时,其金属外壳带有一定电压,为此系统一般实施漏电保护以保证安全。而金属设备外壳的接地电阻值,应根据允许的接触电压和漏电保护整定电流来计算。
对于IT系统,发生单相故障接地时,故障电流小,不必因此而停电,但必须装设能发出接地故障音响的报警装置。而其受电装置的金属外壳的接地电阻,应根据允许的接触电压和相线与外露可导电部分之间发生故障的故障电流来计算。

低压电气装置保护接地系统中存在的问题
张强 张雅明 阎文贵 山西省大同供电分公司 (037008)

在两网改造中,有的单位在设计安装低压电气装置接地系统中,存在一些问题,给今后运行中带来不应有的弊端,现分述如下:
1 TT接地系统不应要求中性线重复接地
中华人民共和国电力行业标准DL 499-92《农村低压电力技术规范》(以下简称"规范")规定采用TT系统时应满足如下要求:
除变压器低压侧中性点直接接地外,中性线不得再接地,且保持与相线同等的绝缘水平。
但是,一些单位在两网改造中要求将TT系统中性线作重复接地,理由是防止中性线断线后中性点漂移带来的三相电压不平衡。这是直接违反"规范"规定的。实际上,此做法效果有限,问题不少。
(1) 剩余电流动作保护器不能投入使用:
中性线重复接地后,部分正常负荷电流将流经大地,对剩余电流动作保护器形成剩余电流而
使其误动作,如图1所示。

图1 TT系统中性线重复接地引起剩余电流动作总保护误动
"规范"规定,采用TT系统低压电力网应装设剩余电流动作总保护和末级保护,而TT系统中性线作重复接地后是不能装设总保护的,一旦发生单相接地故障或触电事故时无法断开电源,可能造成人身伤亡事故。
个别供电单位为了解决总保护器投运问题,竟将变压器中性线工作接地断开,这是绝对不允许的。配电变压器低压侧中性点直接接地,其目的是配电变压器高、低压绕组一旦因绝缘损坏被击穿时,则可抑制低压侧电压的升高;在单相接地故障中,使非故障相对地电压不会升高;易实施单相接地保护。
(2) 把TT系统变成了TN-C系统
在TT系统中,若把中性线作重复接地,就是把形式上的TT系统,变成了实质上的TN-C系统,如图2所示。

图2 TT系统中性线重复接地后变成了TN-C系统
从图2可以看出,若N线重复接地点与用户设备接地较近,两个接地电阻是并联电路,也就是把设备外壳接到了中性线上,形成了TN-C系统。
2 在TT系统中应采取措施防止中性线断线
(1) 必须保证中性线有足够的机械强度,应采用N线应与相线的导线截面相同;
(2) 保证N线连接的施工质量;
(3) 尽量作到三相负荷平衡;
(4) 对低压线路应定期巡视,定期检修,发现缺陷立即处理。
3 不应要求采用TN-C系统
低压电力线路改造中,有的单位要求把电能表外壳与中性线连接在一起,形成了TN-C系统。而TN-C系统只适合于有独立变压器且有电气专业人员维修的厂矿企业。
"规范"规定农村低压电力网宜采用TT系统;一般用户是不应采用TN-C系统的,因为:
(1) 它不能装用剩余电流动作保护装置,以有效防止电气设备接地故障的间接接触电击、接地电弧火灾和直接接触电击;
(2) 它不能断开PEN线,因此难以防止在电气检修时,故障电压招致检修人员的电击事故和电气火灾;
(3) TN-C系统的单相回路内,如果PEN线中断,电气设备外壳可带高达220V的对地电压,威胁人身安全;
(4) TN-C系统的三相回路内,如果PEN线中断,不仅使设备失去等电压连接和接地,在三相不平衡时还因"断零"而引起烧坏单相设备事故;
(5) TN-C系统PEN线不平衡电流产生的电压,将在电气装置内产生电位差和杂散电流,容易打火和干扰电子设备。
在两网改造中,作者发现有的单位的接地系统是不合适的,其接线如图3所示。
从图中分析,是一个TN-C系统,表箱用螺栓固定在住户的砖墙上,抄表人员在抄表时有麻电感觉。其原因是三相负荷不平衡,N线带有电压,因而导致电能表箱外壳带有电压而招致抄表人员电击。
4 低压电网保护接地系统选用原则
(1) 非独立变压器供电的厂矿企业不采用TN-C系统。

图3
(2) 分散住宅或农村用户宜采用TT系统。
(3) 民用建筑应采用TN-S系统或TN-C-S系统。
(4) 商业、宾馆、娱乐场所、办公大楼等应采用TN-S系统,并作等电位连接。
(5) 在爆炸和火灾危险场所,禁止采用TN-C系统,而应采用TN-S、TN-C-S、TT或IT系统。
(6) 建筑施工现场宜采用TT系统。
(7) 计算机室或电子信息设备,应采用TN-S系统。
(8) 煤矿或其它矿井,应采用IT系统。
温馨提示:答案为网友推荐,仅供参考
第1个回答  推荐于2016-06-07
三相变压器的中性点引出线称为零线,对于单相负荷用电就需要零线作为电源的回路.
地线是为了保证人身和设备安全的设施,当设备带电时,有了牢固的地线可以确保人不触电,低压设备不被电击坏.同时还起到屏蔽的作用.
三相变压器的中性点分接地(称大电流接地系统--一般在380V及以下低压应用)和不接地(称小电流接地系统--一般在6000V以上高压应用)两种.中性点接地目的是为了一旦线路有接地现象,就产生大电流,引起开关跳闸,保险烧断,瞬间就自动切断电源.
用电安全要求不允许变压器的零线接地,然后再从地引出线来接在电器上.变压器可以接地,零线必须从变压器引到电器上(变压器到电器设备之间的零线和地线是可以共用的).本回答被提问者采纳
第2个回答  2006-10-10
你说的这个系统应该是TN-C系统,零线和接地线在出变压器时是接在一起的,别的地方零线和接地线不能接在一起,接地线起到一个保护的作用,一直与接地体相连,这里必须明白一个事情就是保护系统必须有过流开关和漏电才能起到作用,过流开关的保护原理就不用讲了,漏电断路器的原理就是利用回路中电流为零的原理制作的保护开关,火线和零线都穿过零序互感器(有的在开关内部),而接地线绝不能穿过互感器。平时电流从火线回零线,零序互感器上电流为零,当有人触电,或漏电时,电流就回导入大地,就不通用零线的回路,通过接地线的回路回到变压器,这时零序互感器上就有感应电流,通过开关内部电路放大,促使开关动作,起到保护的作用。这就是零线和接地线的区别,也就是它们在过漏电开关以后不能接在一起,开关以前,他们是接通的
第3个回答  2006-10-10
1). 零线是从变压器中性点直接引出的,我们用的220V零线是从变压器直接出来的。
2). 地线是按照标准在大地中作的。这种系统为三相五线制供电系统;
3).零线可以进开关,地线不能;
4).地线可以进行重复接地;
5).二者绝对不可以互换,否则,有触电危险。

参考资料:http://web.cf66.net/article/article_711_1.html