过一点可以画无数条直线对吗

如题所述

经过一点可以作无数条直线; 故答案为:正确。

两点确定一条直线,所以过两点只能画一条直线,直线由无数个点构成。直线是面的组成成分,并继而组成体。没有端点,向两端无限延长,长度无法度量,它有无数条对称轴,其中一条是它本身,还有所有与它垂直的直线(有无数条)对称轴。在平面上过不重合的两点有且只有一条直线,即不重合两点确定一条直线。

射线有且仅有一个端点,无法测量长度(它无限长),同时过一点就能画出无数条射线。

扩展知识:

射线(ray)是由各种放射性核素,或者原子、电子、中子等粒子在能量交换过程中发射出的、具有特定能量的粒子束或光子束流。常见的有的α射线、β射线、γ射线、X射线和中子射线等。

常用射线:

各种射线,由于电离密度不同,生物效应是不同的,所引起的变异率也有差别。为了获得较高的有利突变,必须选择适当的射线,但由于射线来源、设备条件和安全等因素,目前最常用的是γ射线和X射线。

可见光、红外线、紫外线等,是由源自外层电子引起。伦琴射线由内层电子引起。γ射线是由原子核引起。

种类特性:

1、γ射线(伽马射线)

波长短于0.2Å的电磁波。由放射性同位素如60Co或137Cs产生。是一种高能电磁波,波长很短(0.001nm ~ 0.0001nm),穿透力强,射程远,一次可照射很多材料,而且剂量比较均匀,危险性大,必须屏蔽(几个cm的铅板或几米厚的混凝土墙)。

γ射线是原子衰变裂解时放出的射线之一。此种电磁波波长很短,穿透力很强,又携带高能量,容易造成生物体细胞内的DNA断裂进而引起细胞突变、造血功能缺失、癌症等疾病。

但是它可以杀死细胞,因此也可以作杀死癌细胞,以作医疗之用。

1900年由法国科学家P.V.维拉德(Paul Ulrich Villard)发现,将含镭的氯化钡通过阴极射线,从照片记录上看到辐射穿过0.2mm的铅箔,拉塞福称这一贯穿力非常强的辐射为γ射线,是继α射线、β射线后发现的第三种原子核射线。

2、X射线

波长介于紫外线和γ射线间的电磁辐射。由德国物理学家W.K.伦琴于1895年发现,故又称伦琴射线。是由X光机产生的高能电磁波。波长比γ射线长,射程略近,穿透力不及γ射线。有危险,应屏蔽(几毫米铅板)。

3、α射线

也称为“甲种射线”。是放射性物质所放出的α粒子流。它可由多种放射性物质(如镭)发射出来。α粒子的动能可达几兆电子伏特。从α粒子在电场和磁场中偏转的方向,可知它们带有正电荷。

由于α粒子的质量比电子大得多,通过物质时极易使其中的原子电离而损失能量,所以它能穿透物质的本领比β射线弱得多,容易被薄层物质所阻挡,但是它有很强的电离作用。从α粒子的质量和电荷的测定,确定α粒子就是氦的原子核。

4、β射线

由放射性同位素(如32P、35S等)衰变时放出来带负电荷的粒子。在空气中射程短,穿透力弱。在生物体内的电离作用较γ射线、X射线强。β射线是高速运动的电子流(0,-1)e,贯穿能力很强,电离作用弱。

本来物理世界里没有左右之分的,但β射线却有左右之分。在β衰变过程当中,放射性原子核通过发射电子和中微子转变为另一种核,产物中的电子就被称为β粒子。在正β衰变中,原子核内一个质子转变为一个中子,同时释放一个正电子,在“负β衰变”中,原子核内一个中子转变为一个质子,同时释放一个电子,即β粒子。



温馨提示:答案为网友推荐,仅供参考