鹤壁矿区地质与水文地质条件

如题所述

一、气象水文

鹤壁矿区属北温带大陆性半干旱型气候,春秋多风。20世纪50年代至今,平均气温13.5°C,年平均降水量659.5mm,年蒸发量2195.9mm。

矿区内长年性河流有南部的淇河和北部的善应河,流量分别为2.4~3.7m3/s和6~7m3/s,最大流量分别为2572m3/s和1055m3/s。

与矿区地下水有直接水力联系的地下水域有南部的许家沟泉域和北部的小南海泉域。许家沟泉位于矿区南部淇河北岸,出露于奥陶系灰岩中,由8个泉组成,流量0.9~1.4m3/s。小南海泉出露于善应河两岸的奥陶系灰岩中,出露标高130~135m,由50余个泉组成,总流量5.5~7.09m3/s。

二、地形地貌

鹤壁矿区位于河南省北部的鹤壁市境内,属太行山东麓煤田的一部分。矿区西依太行山区,东邻京广铁路,东西宽5km,南北长30km,面积约150km2

矿区地貌属侵蚀剥蚀低山向剥蚀堆积丘陵岗阜区的过渡带,以丘陵岗阜地貌为主。山脉总体延伸方向受新华夏系构造控制呈NNE向绵延分布。由于组成山体岩性的差异和地层平缓的影响,阶梯状山坡极为明显。抗风化力强的白云质灰岩、微晶灰岩、泥晶灰岩形成3°~50°的陡坡或70°~80°的陡崖。寒武系—奥陶系抗风化力弱的页岩和角砾状灰岩形成10°~30°的缓坡。低山区位于矿区西部,最高标高+763.5m,一般标高+503~+576m,相对高度509m。

矿区岗阜地貌东与华北平原相接,西起西山断层。在第三系砂砾岩和泥岩分布区,形成高差50~70m的丘陵地貌。靠近西山狭长地带呈零星分布的石炭系含煤地层和局部的奥陶系灰岩形成海拔+250~+350m、相对高度50~150m的浑圆状丘陵地貌。

三、地层构造

1.地层

矿区出露的地层有下奥陶统的冶里组—亮甲山组白云岩,中奥陶统的峰峰组—马家沟组的泥晶灰岩、白云质灰岩、角砾状灰岩;中石炭统的本溪组泥岩—砂岩隔水层,上石炭统太原组含煤(下夹煤)地层下二叠统山西组的含煤地层(二1煤);上第三系的砾岩、砂岩和泥灰岩,第四系的黄土、砂砾层。

下夹煤包括下夹上煤(六煤),下夹中煤(七煤)和下夹下煤(八煤),赋存于太原组含煤地层的底部。六煤与八煤相距9~10m,它的间接底板是本溪组隔水层,它的直接顶板是太原组的L2灰岩。

2.构造

本矿区在构造上位于新华夏系第二沉降带与第三降起带的过渡带上,东邻汤阴拗陷,西依太行山隆起。总体上是以中寒武统为核心的倾伏背斜的一翼所构成的单斜构造,地层走向大致呈南北,倾向东,一般倾角8°~30°,局部可达到50°~60°。东部被第三系和第四系覆盖,西部山区寒武-奥陶系则广泛出露。

据统计,NW向断层少且落差小,延走向方向延伸不远;与断裂构造相伴生的还有一组走向NE、背向斜相间发育的倾伏褶曲,沿倾伏背斜发育的纵张断层成为各井田的自然边界;落差大于20m的断层有百余条,大于100m的断层有30余条。矿区以断裂构造为主,多为走向NE或NNE的高角度正断层。

本矿区有两期火成岩体,在矿区南东的庞村一带有喜马拉雅期的橄榄玄武岩沿NNE向断层带呈现零星分布,与第三系砾岩的接触面上有明显的烘烤现象。西北部白石山背斜有燕山期的闪长岩、二长岩和斜长岩侵入,大致沿NW40°方向伸延。

四、含水层组和隔水层组

本矿区含水系统可分为寒武系—奥陶系含水层组,石炭系—二叠系含水层组,上第三系含水层组和第四系含水层组。寒武系—奥陶系含水层组是本矿区最主要的含水层组,按其富水性可分为中奥陶统含水岩组和中寒武—下奥陶统含水岩组。石炭系—二叠系含水层组由4对含水岩、隔水岩组组成,即下石盒子组页岩夹砂岩弱含水层、山西组砂岩含夹页岩隔水层、太原组薄层灰岩含水层与页岩隔水层组、本溪组泥岩夹灰岩及砂岩隔水层。第四系含水层组按岩性和含水性、透水性分为全新统泥岩隔水层夹砾石、砂岩、泥灰岩含水岩组和中新统粘土夹粉砂岩弱含水岩组。由于第四系含水层组和上第三系含水层组与高承压水上采煤水害影响不大,下面分别将中奥陶统灰岩含水岩组、本溪组隔水层和石炭系—二叠系含水层组中的太原组薄层灰岩含水层概述如下。

1.中奥陶统灰岩含水岩组

中奥陶统灰岩含水岩组按其岩性、化学成分、结构和富水性强弱划分为贾汪页岩隔水层,角砾状灰岩和白云质灰岩弱含水段(

),泥晶-砂屑灰岩中等含水段(

)和微(细)泥晶灰岩强含水段(

),现分述如下。

(1)

贾汪页岩隔水层厚7m,区域分布稳定,厚度薄,隔水性弱。

(2)

弱含水段厚14~30m,主要为角砾状灰岩,喀斯特不发育,含微弱溶孔裂隙水。

(3)

中等含水段厚89m,主要由泥晶灰岩,砂屑灰岩和灰质泥晶白云岩组成,喀斯特中等发育,在有利的水动力条件下也可以发育成大溶洞,例如矿区西部山区的雪花洞。据调查,机井涌水量可达700~1500m3/d。

(4)

弱含水段厚36~43m,主要由角砾状灰岩组成,角砾成分为泥晶灰岩,胶结物为方解石,喀斯特不发育,以不规则溶孔为主,泉的流量甚小,民用机井流量小于100m3/d。

(5)

强含水段厚108m,岩性以巨厚、厚层状泥晶灰岩为主,喀斯特发育,在有利的水动力条件下能发育成大的溶洞,例如四矿西部的黄龙洞,该洞宽1~2.5m,高0.5~3m,长53m。小南海泉和许家沟泉中流量最大的均出露于本段。本段地下水循环条件比

段好,硬度比

段低,水质为

型水。鹤壁市工矿企事业单位供水多以此段为目的层,单井流量1200~1900m3/d,个别可达4500m3/d。

(6)

弱含水段区域性厚度60~70m,岩性为白云质、泥质角砾状灰岩,白云质灰岩,喀斯特不发育,以蜂窝状溶孔为主,含裂隙喀斯特水,为一弱含水段。

(7)

强含水段区域厚度52~80m,为青灰色巨厚、厚层状灰岩,溶洞和溶隙发育,富水性强。在掩盖地区的一些地段,因其上部溶洞裂隙被粘土岩充填,含水性大大减弱,形成弱含水带。在小南海泉群中该段下部沿断裂带出露的泉的流量可达200 L/s。

2.本溪组隔水层组

本溪组隔水组为矿区防止奥灰水突入矿井的可以值得利用的隔水层。由泥岩隔水层夹砂岩、灰岩弱含水层组成,厚11.3~50.6m。

3.太原组含水层组

太原组总厚101~167m,含水层组由C3L1—C3L9九层灰岩含水层,S1—S8八层砂岩弱含水层和页岩组成。薄层灰岩含水层总厚20~25m,其中C3L2和C3L8分布稳定,厚度分别为7~11m和5~6m,含较丰富的喀斯特裂隙水,其中C3L2灰岩的单位涌水量可达5.88~7.39m3/h·m。因受补给条件限制,在矿井疏干条件下,它们接受奥灰水补给,矿化度稍有减少。该两层灰岩含水层径流条件差、水交替不强,水质类型为

-Ca2+型水和

型水。

五、奥陶系灰岩地下水特征

从鹤壁矿区奥陶系灰岩地下水动态的多年观测资料可知,因受曹家倾伏背斜的影响,在四矿附近,奥陶系灰岩喀斯特水形成一个高水位带,自此以南则由北向南径流,集中排泄于许家沟泉群;另一方面,使矿区北部的九矿和四矿的一部分奥陶系灰岩喀斯特水自南向北径流,排泄于小南海泉群。将矿区分划为中部和南部属许家沟泉域,北部属小南海泉域。

鹤壁一矿和相邻的二矿同属于许家沟泉域,由于二矿南部自然矿界F3断层落差达390~600m,造成断层两侧奥陶系灰岩含水层不连续,在断层的北侧中奥陶统灰岩地下水位标高为+135m,在断层南侧水位标高为+127m,地下水自北向南流经F3断层时受到很大阻力,产生明显的水位跌降。因此,F3断层可能是一条阻水断层,它将鹤壁矿区分为两个相对独立的水文地质分区,即一、二矿为一个水文地质分区,三、五、六、八和十矿为另一水文地质分区。

在枯水季节,南部水文地质分区水位标高为+118.9~124.4m,一、二矿水文地质分区内的中奥陶流灰岩水位标高为+135.4m,在雨季前者水位标高为+129.67~135.9m,后者为+144.7m。矿区奥陶系灰岩含水层主要接受西部山区露头部分大气降水入渗补给,掩伏露头部分的第四系潜水补给和河流、沟渠、库区等渗漏补给,因此,地下水位动态表现为受降水影响明显的特征。

六、奥陶系灰岩顶部特征

众所周知,自奥陶纪沉积了马家沟灰岩和峰峰组之后至中石炭世沉积本溪组之前的漫长地质年代里,华北地区广大奥陶系灰岩裸露于地表经受了风化剥蚀和溶蚀作用,在奥陶系灰岩中形成了古喀斯特,在其表面形成了古剥蚀-溶蚀面,古剥蚀-溶蚀面存在相对低洼的沟谷或封存洼地,宽度数十米或百米。当中石炭世华北地台开始沉降,古剥蚀面接受本溪组沉积的最初阶段,一些粗碎屑、分选不良的砾石或砂首先在低洼沟谷中沉积,把这些低洼沟谷“填平补齐”。当华北地台断续下降、海水进一步漫延的时候,细碎屑的铝质粘土沉积于那些早先已被粗碎屑填平了的低洼沟谷之上和那些相对隆起的古剥蚀-溶蚀面之上。对于那些被粗碎屑“填平补齐”了的低洼沟谷地段,当中石炭世开始沉积铝质粘土时,因为有粗碎屑砂或砾石的阻隔,奥陶系灰岩顶部的古喀斯特或风化裂隙没有被铝质粘土充填或充填不佳或者古喀斯特裂隙已被早期的粗碎屑砂充填,例如九矿的3-6孔的奥陶系灰岩顶有5m之裂隙被粉砂岩充填(如图2-2)[19]

图2-2 奥陶系灰岩顶部溶隙-裂隙充填示意图

1—被铝质粘土充填的溶隙;2—未被充填或被砂岩充填的溶隙;3—铝质泥岩;4—页岩;

因此,使奥陶系灰岩顶部只有很薄或者缺失被粘土充填的弱含水带。相比之下,原古剥蚀-溶蚀面相对隆起地段,铝质粘土直接沉积其上并充填到奥陶系灰岩的溶洞裂隙之中,形成富水性弱、连通性差的具有一定厚度的弱含水带。但其水文地质意义巨大,一般认为,奥陶系灰岩顶面以下30~50m喀斯特发育,这个规律可以作为供水和注浆堵水中重要的参考依据。

七、安阳矿区地质与水文地质条件

1.矿区概况

安阳矿区位于河南省安阳市区西约25km处,矿区南北长35km,东西宽5km,总面积155km2。区内下二叠统山西组二1煤层为主要开采煤层,厚度稳定,一般4~6m,普遍可采。矿区开采范围内地质储量4.5×108t,可采储量3×108t。

2.地形地貌

安阳矿区为一典型丘陵地带,冲沟发育,有利于大气降水的径流、排泄,具有明显的季节特征,相对高差150m左右,对矿井充水无大影响。

3.地层构造

矿区范围内基本构造形态为向东倾斜的单斜构造并伴有宽缓的小型褶曲,地层倾角一般15°~25°。井田内构造主要以NNE走向的断裂为主,断层走向一般为NE10°~35°,且多为正断层。本区主要含煤地层为下二叠统山西组和上石炭统太原组,含煤系数为7.51%。

矿区处于新华夏系第三隆起带——太行山复背斜的东翼,因此NNE向构造对地下水起着控制作用。与煤系地层走向一致的NNE向正断层,沿倾向由东向西逐级抬起,形成一些交替出现的近南北向的狭长地垒地堑,破坏了基岩含水层的连续性,形成多块独立的水文地质单元。

区内发育有NEE及NWW向断层,一般认为,这两组近东西向的断层为张性断层,为导水断层;NNE向高角度正断层属压扭性质,反而导水性差,大量井巷工程穿过断层水量不大证实该点。

4.含水层和隔水层

这里主要研究煤层底板主要含水层和隔水层。自上而下可划分3个含水层和3个隔水层:奥陶系灰岩喀斯特承压含水层,本溪组铝质岩隔水层,太原组下段灰岩喀斯特裂隙承压含水层,太原组中段砂、泥岩隔水层,太原组上段喀斯特裂隙承压含水层,二1煤至L8灰岩隔水层,现详述如下。

(1)奥陶系灰岩喀斯特承压含水层:厚度400m以上,顶面以下200m范围内为深灰色、浅灰色厚层状和巨厚层状微晶质灰岩和花斑状灰岩,下部为白云质灰岩,喀斯特发育,有统一的地下水面,静水位标高+135m左右,可与其他含水层通过断裂构造发生水力联系,是二1煤开采时间接充水含水层。

(2)本溪组铝质岩隔水层:由铝土层、铝土质泥岩、泥岩、砂质泥岩和薄层灰岩组成,其中以下部铝土质泥岩最稳定,厚8.3~22.75m;该层假整合于奥陶系灰岩之上,正常情况下能阻止奥灰水进入煤层。

(3)太原组下段灰岩喀斯特裂隙承压含水层:厚30~35m,内含2~4 层灰岩(L1、L2、L3、L4),灰岩厚4.25~9.70m,一般6.00m左右,其中L2灰岩稳定,厚度一般在5m左右,单位涌水量0.043~1.34L/s·m,渗透系数0.95~30.27m/d,水位标高135.28~135.38m。

(4)太原组中段砂、泥岩隔水层:该段指L4—L8灰岩之间的碎屑岩,其中偶夹中粗粒砂岩、薄层煤和薄层灰岩,厚55m 左右;岩性变化较大,硅质成分较高,厚度稳定,透水性差,隔水性能良好,能阻止太原组上、下段灰岩之间的水力联系。

(5)太原组上段灰岩喀斯特裂隙承压含水层:该段由L8灰岩及中粗粒砂岩组成,以L8灰岩为主,普遍发育,层厚0.33~6.85m,一般3m左右;L8灰岩单位涌水量0.07L/s·m,渗透系数3.787m/d,水位标高136.77m,喀斯特裂隙发育较弱,为弱含水层。

(6)二1煤至 L8灰岩隔水层:该层由泥岩、砂质泥岩、砂岩和薄层灰岩组成,厚26.71~50.40m,一般为35m左右,能有效阻止L8灰岩水进入二1煤层。

5.水害事例及防治对策

(1)铜冶煤矿淹井事故:1965年8月25日,铜冶煤矿103工作面下顺槽打钻时,超前孔钻进43m时,孔内涌水,涌水量开始为32.4m3/h,后增至1400m3/h淹井,突水原因为超前孔钻遇与奥陶系强含水层相通的喀斯特陷落柱,经注浆堵水后,1968年6月恢复生产。

(2)龙山煤矿淹井事故:1976年1月,龙山煤矿在掘进15采区首采面时,遇断层与奥陶系灰岩喀斯特承压含水层沟通,涌水量最大达2520m3/h,淹井;突水原因为掘进钻头遇到F165断层的支断层,而F165断层为边界导水断层,该断层位置不清楚;1977年6月,龙山煤矿在堵水过程中再次发生断层突水,涌水量达4000m3/h。

温馨提示:答案为网友推荐,仅供参考
第1个回答  2024-05-27
鹤壁矿区地质与水文地质条件
鹤壁矿区地处豫北山地丘陵区,太行山脉南麓,地质构造复杂,水文地质条件独特。
地质条件
鹤壁矿区地层出露齐全,主要为古生代寒武系、奥陶系、志留系、石炭系和二叠系地层,以及少量中生代侏罗系地层。矿区地层岩性主要由砂岩、页岩、石灰岩、白云岩和玄武岩组成。
矿区构造复杂,断裂发育,主要有北东向、北北东向和北西向三大断裂带。断裂带控制着矿区的岩浆活动和矿产资源的分布。
水文地质条件
鹤壁矿区水文地质条件复杂,地下水主要赋存于裂隙水、岩溶水和孔隙水三种类型中。裂隙水主要赋存于寒武系、奥陶系和志留系地层中,岩溶水主要赋存于志留系白云岩和石灰岩地层中,孔隙水主要赋存于石炭系和二叠系砂岩地层中。
矿区地下水水量丰富,水质良好,总体呈带状分布。北部为地下水补给区,地下水位较高,水质较好;中部为地下水主排泄区,地下水位较低,水质较差;南部为地下水循环区,地下水位中等,水质一般。
煤矿开采对地质与水文地质条件的影响
鹤壁矿区的煤矿开采对地质与水文地质条件产生了深远的影响:
岩层破坏:煤矿开采会导致地表塌陷、地质灾害等问题,破坏地质结构稳定性。
水文环境改变:煤矿开采会改变地下水流场和水位,导致部分区域地下水位下降或上升,影响水资源可持续利用。
地表水污染:煤矿开采产生的废水和废气会污染地表水,影响水生态环境。
地质与水文地质条件对煤矿开采的影响
鹤壁矿区的地质与水文地质条件也对煤矿开采产生了一定的影响:
矿层分布复杂:复杂的地质构造和断裂发育,导致煤层分布零星、破碎,采矿难度较大。
水害风险高:矿区地下水丰富,开采过程中容易发生水害,影响采矿安全。
环境保护难度大:煤矿开采对地质与水文地质条件的影响,增加了煤矿开采的环境保护难度。
对煤矿开采的建议
针对鹤壁矿区的地质与水文地质条件,对煤矿开采提出以下建议:
科学规划:合理规划矿区开采方案,充分考虑地质构造、水文地质条件等因素,避免对地质环境和水资源造成较大影响。
综合治理:采取措施加强地质灾害防治、水环境保护,减少煤矿开采对地质与水文地质条件的负面影响。
技术创新:积极采用先进的技术和设备,提高煤矿开采效率,降低环境影响。本回答被网友采纳