1、N
全体非负整数的集合通常简称非负整数集,记作N。
n在数学中代表了非负整数集,全体非负整数的集合通常称非负整数集或自然数集,非负整数集包含0、1、2、3等自然数,数学上用字母“n”来表示,非负整数集包括正整数和零,是一个可列集。
在非负整数集中,有一个最小的自然数0,在N中除去零之后,其余的自然数构成的数集称为正整数集,常用符号N+或N*表示,1在N+中是最小的元素,在N和N+中都没有最大的自然数,它们都是无限集。
2、Z
全体整数的集合通常称作整数集,记作Z。
整数集由全体整数组成的集合叫整数集。它包括全体正整数、全体负整数和零。数学中整数集通常用Z来表示。
整数集合{…,-1,0,1,…}
3、Q
全体有理数的集合通常简称有理数集,记作Q。
所有有理数所构成的集合,有理数集是实数集的子集,有理数集是一个无穷集,不存在最大值或最小值。有理数为整数(正整数、0、负整数)和分数的统称。
正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。由于任何一个整数或分数都可以化为十进制循百环小数,反之,每一个十进制循环小数也能化为整数或分数,因此,有理数也可以定义为十进制循环小数。
4、r
实数集
R的意义。
●数学数论的R或r表示集合理论中的实数集,而复数中的实数部分也以此符号为代表。
●几何学的R或r表示一个圆的半径,代表英文单词radius。
●几何学中,∠R则表示直角,代表英文单词rightangle。
●几何学的r又表示弧度(-种角度的表示方法,360度等于弧度2π)。
5、c
复数集合计作C。
集合:一般的,一定范围内某些确定的,不同的对象的全体构成一个集合。
子集:对于两个集合A和B,如果集合A中的任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A是集合B的子集,记作A⊆B读作A包含于B。
空集:不含任何元素的集合叫做空集。记为Φ。
集合的三要素:确定性、互异性、无序性。
集合的表示方法:列举法、描述法、视图法、区间法。
集合的分类:有限集、无限集、空集。