请问1的平方到n的平方之和是多少?

如题所述

1²+2²+...+n²=n(n+1)(2n+1)/6
数学归纳法
n=1时,1=1*2*3/6=1成立
假设n=k时也成立,那么k(k+1)(2k+1)/6=1²+2²+...+k²
那么n=k+1
1²+2²+...+k²+(k+1)²=k(k+1)(2k+1)/6+(k+1)²=k(k+1)(2k+1)+6(k+1)²/6
k(k+1)(2k+1)+6(k+1)²=(k+1)(2k²+k+6k+6)=(k+1)*(2k²+7k+6)=(k+1)(k+2)(2k+3)
=(k+1)((k+1)+1)(2(k+1)+1)
所以1²+2²+...+k²+(k+1)²=k(k+1)(2k+1)/6+(k+1)²=k(k+1)(2k+1)+6(k+1)²/6
=(k+1)((k+1)+1)(2(k+1)+1)/6
即n=k+1时,也成立
所以
1²+2²+...+n²=n(n+1)(2n+1)/6
温馨提示:答案为网友推荐,仅供参考
第1个回答  2016-04-15
利用立方差公式
n^3-(n-1)^3=1*[n^2+(n-1)^2+n(n-1)]
=n^2+(n-1)^2+n^2-n
=2*n^2+(n-1)^2-n
2^3-1^3=2*2^2+1^2-2
3^3-2^3=2*3^2+2^2-3
4^3-3^3=2*4^2+3^2-4
.
n^3-(n-1)^3=2*n^2+(n-1)^2-n
各等式全相加
n^3-1^3=2*(2^2+3^2+...+n^2)+[1^2+2^2+...+(n-1)^2]-(2+3+4+...+n)
n^3-1=2*(1^2+2^2+3^2+...+n^2)-2+[1^2+2^2+...+(n-1)^2+n^2]-n^2-(2+3+4+...+n)
n^3-1=3*(1^2+2^2+3^2+...+n^2)-2-n^2-(1+2+3+...+n)+1
n^3-1=3(1^2+2^2+...+n^2)-1-n^2-n(n+1)/2
3(1^2+2^2+...+n^2)=n^3+n^2+n(n+1)/2=(n/2)(2n^2+2n+n+1)
=(n/2)(n+1)(2n+1)
1^2+2^2+3^2+...+n^2=n(n+1)(2n+1)/6

另外一个很好玩的做法
想像一个有圆圈构成的正三角形,
第一行1个圈,圈内的数字为1
第二行2个圈,圈内的数字都为2,
以此类推
第n行n个圈,圈内的数字都为n,
我们要求的平方和,就转化为了求这个三角形所有圈内数字的和.设这个数为r
下面将这个三角形顺时针旋转60度,得到第二个三角形
再将第二个三角形顺时针旋转60度,得到第三个三角形
然后,将这三个三角形对应的圆圈内的数字相加,
我们神奇的发现所有圈内的数字都变成了2n+1
而总共有几个圈呢,这是一个简单的等差数列求和
1+2+……+n=n(n+1)/2
于是3r=[n(n+1)/2]*(2n+1)
r=n(n+1)(2n+1)/6
第2个回答  2016-04-15
1的平方到n的平方之和是n(n+1)(2n+1)/6