如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。
离散型随机变量的一切可能的取值xi与对应的概率p(xi)乘积之和称为该离散型随机变量的数学期望 (若该求和绝对收敛),记为E(x),是简单算术平均的一种推广,类似加权平均。
离散型随机变量X的取值为
为X对应取值的概率,可理解为数据
出现的频率f(Xi),则:
扩展资料:
离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。
变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数根号20,因而k是离散型随机变量。
如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。
例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数根号20等,因而称这随机变量是连续型随机变量。