已知三角形边长,计算三角形的角度过程如下:
1、设三角形中角A所对应的边长是a,角B所对应的边长是b,角C所对应的边长是c。再利用公式:
CosA=(c^2+b^2-a^2)/2bc
CosB=(a^2+c^2-b^2)/2ac
CosC=(a^2+b^2-c^2)/2ab
算出每一个角的余弦值,利用计算器上的反余弦函数功能就可以计算出各自的角度值。
2、如果三角形是钝角三角形,计算出的钝角的余弦值是负的,角度也就是负的,这时要加上180度才是钝角的角度。(注:a^2+b^2-c^2=0说明C的角度等于90度)
解三角形一般需要用到如下定理:
若一三角形的二边相等,则二边的对角相等,此定理列在欧几里德的《几何原本》中,称为驴桥定理,也是等腰三角形定理。
驴桥定理是在几何原本的前面出现的较困难命题,是数学能力的一个门槛,无法理解此一命题的人可能也无法处理后面更难的命题。
驴桥定理的逆定理是若一三角形的二角相等,则二角的对边相等。
全等:若二等腰三角形,其腰相等,底边也相等,即可以用SSS全等证明二个等腰三角形全等,而三角形的角可以用余弦定理求得。