第1个回答 2022-08-28
证明:(1)作IG⊥AB于G点,连BI,BD,如图,
∴AG=
1
2
(AB+AC-BC),
而BC=
1
2
(AB+AC),
∴AG=
1
2
BC,
又∵AD平分∠BAC,AE平分∠BAC的外角,
∴∠EAD=90°,
∴O点在DE上,即ED为⊙O的直径,
而BD弧=DC弧,
∴ED垂直平分BC,即BH=
1
2
BC,
∴AG=BH,
而∠BAD=∠DAC=∠DBC,
∴Rt△AGI≌Rt△BHD,
∴AI=BD;
(2)∵∠BID=∠BAI+∠ABI,
而∠BAI=∠DBC,∠ABI=∠CBI,
∴∠DBI=∠BID,
∴ID=DB,
而AI=BD,
∴AI=ID,
∴OI为三角形AED的中位线,
∴OI=
1
2
AE.