D类放大器的工作原理是什么?

如题所述

所有的d类放大器调制技术都将音频信号的相关信息编码到一串脉冲内。通常,脉冲宽度与音频信号的幅度相联系,脉冲频谱包括有用的音频信号脉冲和无用的(但无法避免)的高频成分。在所有方案中,总的综合高频功率大致相同,因为在时域内波形的总功率是相同的,并且根据parseval定理,时域功率必须等于频域功率。但是,能量分布变化很大:在有些方案中,低噪声本底之上有高能量音调,而在其它方案中,能量经过整形消除了高能量音调,但噪声本底较高。
最常用的调制技术是脉宽调制(pwm)。从原理上讲,pwm是将输入音频信号与以固定载波频率工作的三角波或斜波进行比较。这在载波频率条件下产生一串脉冲。在每个载波周期内,pwm脉冲的占空比正比于音频信号的幅度。在图7的例子中,音频输入和三角波都以0 v为中心,所以对于零输入,输出脉冲的占空比为50%。对于大的正输入,占空比接近100%,对于大的负输入,占空比接近0%。如果音频幅度超过三角波的幅度,就会发生全调制,这时脉冲串停止开关,占空比在具体周期内为0%或100%。
pwm之所以具有吸引力是因为它在几百千赫pwm载波频率条件下(足够低以限制输出级开关损失)允许100 db或更好的音频带snr。许多pwm调制器在达到几乎100%调制情况下也是稳定的,从原理上允许高输出功率,达到过载点。但是,pwm存在几个问题:首先,pwm过程在许多实现中会增加固有的失真(参看深入阅读资料4);其次,pwm载波频率的谐振在调幅(am)无线电波段内会产生emi;最后,pwm脉宽在全调制附近非常小。这在大多数开关输出级栅极驱动电路中会引起问题,因为它们的驱动能力受到限制,不能以重新产生几纳秒(ns)短脉宽所需要的极快速度适当开关。因此,在基于pwm的放大器中经常达不到全调制,可达到的最大输出功率要小于理论上的最大值,即只考虑电源电压、晶体管导通电阻和扬声器阻抗的情况。
一种替代pwm的方案是脉冲密度调制(pdm),它在给定时间窗口(脉冲宽度)的脉冲数正比于输入音频信号的平均值。其单个的脉宽不像pwm那样是任意的,而是调制器时钟周期的“量化”倍数。1 bit Σ-Δ调制是pdm的一种形式。
Σ-Δ调制中的大量高频能量分布在很宽的频率范围内,而不是像pwm那样集中在载波频率的倍频处,因而Σ-Δ调制潜在的emi优势要好于pwm。在pdm采样时钟频率的镜像频率处,能量依然存在;但在3 mhz~6 mhz典型时钟频率范围,镜像频率落在在音频频带之外,并且被lc低通滤波器强烈衰减。
Σ-Δ调制的另一个优点是最小脉宽是一个采样时钟周期,即使是对于接近全调制的信号条件。这样简化了栅极驱动器设计并且允许按照理论上的全功率安全工作。尽管如此,1 bitΣ-Δ调制在d类放大器中不经常使用(参看深入阅读资料4),因为传统的1 bit调制器只能稳定到50%调制。还需要至少64倍过采样以达到足够的音频带snr,因此典型的输出数据速率至少为1 mhz并且功率效率受到限制。
最近已经开发出自振荡放大器,例如在深入阅读资料5中介绍的一种。这种放大器总是包括一个反馈环路,以环路特性决定调制器的开关频率,代替外部提供的时钟。高频能量经常要比pwm 分布平坦。由于反馈的作用可以获得优良的音质,但该环路是自振荡的,因此很难与任何其它开关电路同步,也很难连接到无须先将数字信号转换为模拟信号的数字音频源。
全桥电路(见图3)可使用“三态”调制以减少差分emi。在传统的差分工作方式中,半桥a的输出极性必须与半桥b的输出极性相反。只存在两种差分工作状态:输出a高,输出b低;输出a低,输出b高。但是,还存在另外两个共模状态,即两个半桥输出的极性相同(都为高或都为低)。这两个共模状态之一可与差分状态配合产生三态调制,lc滤波器的差分输入可为正、零或负。零状态可用于表示低功率水平,代替两态方案中在正状态和负状态之间的开关。在零状态期间,lc滤波器的差分动作非常小,虽然实际上增加了共模emi,但减少了差分emi。差分优势只适用于低功率水平,因为正状态和负状态仍必须用于对扬声器提供大功率。三态调制方案中变化的共模电压电平对于闭环放大器是一个设计挑战。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2021-01-12

类似光圈的开合机构原理

第2个回答  2008-09-05
通过控制开关单元的ON/OFF,驱动扬声器的放大器称D类放大器。
在D类调制器中,通过将音频信号与高频固定频率信号比较,并将结果在固定频率的载波上调制,数字音频信号被转换成了PWM信号。形成的信号是可变脉宽的固定载波频率(通常在几百kHz),然后由高压功率MOSFET对这些PWM信号进行放大,放 大后的PWM信号再通过低通滤波器去掉载频,恢复出原始基带音频信号。
和性能优良的A/B类放大器相比,D类放大器的音频性能是很差的,不仅失真大,而且动态范围窄。所以,当前D类放大器的设计者就必须改进其性能。通过集成高性能采样率转换器(SRC)和Δ-∑处理技术,新一代解决方案使失真(THD+N)得到了更大的改善,而且动态范围也超过了100dB。本回答被提问者采纳