如何得到曲线积分与路径无关的最终结果?

如题所述

积分与路径无关的条件:所考虑的函数在路径内是连续的;函数的一阶偏导数在路径内是连续的;路径是简单闭合曲线;函数沿路径的偏导数在路径上处处为零;区域内没有奇点。

得到平面第二型曲线积分与路径无关的最终条件,要求被积函数是某个二元函数的全微分,显然这默认要求了该函数必须在区域上每一点都可微。并且此时该第二型曲线积分的计算变得相当简单,它等于该函数在曲线端点的取值之差。

不同的起始点积分后只是相差一个常数项,当我们代入题目给定的积分上下界后,这个常数项总是会被抵消掉,因此选定不同的起始点并不影响最终题目所求的积分值。这跟物理中我们讨论势能时,势能零点可以任取是一个道理。

积分是微积分学与数学分析里的一个核心概念。通常分为定积分和不定积分两种。直观地说,对于一个给定的正实值函数,在一个实数区间上的定积分可以理解为在坐标平面上,由曲线、直线以及轴围成的曲边梯形的面积值(一种确定的实数值)。

积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。

勒贝格积分

勒贝格积分的出现源于概率论等理论中对更为不规则的函数的处理需要。黎曼积分无法处理这些函数的积分问题。因此,需要更为广义上的积分概念,使得更多的函数能够定义积分。同时,对于黎曼可积的函数,新积分的定义不应当与之冲突。

勒贝格积分的概念定义在测度的概念上。测度是日常概念中测量长度、面积的推广,将其以公理化的方式定义。黎曼积分实际可以看成是用一系列矩形来尽可能铺满函数曲线下方的图形,而每个矩形的面积是长乘宽,或者说是两个区间之长度的乘积。

温馨提示:答案为网友推荐,仅供参考