设椭圆x²/a²+y²/b²=1(a>b>0)的左,右顶点分别为A,B,点P在椭圆上且异于A,B两点

设椭圆x²/a²+y²/b²=1(a>b>0)的左,右顶点分别为A,B,点P在椭圆上且异于A,B两点,o为坐标原点。
(1)若直线AP与BP的斜率之积为-1/2,求椭圆的离心率;
(2)若|AP|=|OA|,求证直线OP的斜率k满足|k|>√3

(1)设P的坐标为(acosα,bsinα)
则AP的斜率为bsinα/(acosα+a),BP的斜率为bsinα/(acosα-a)
两者斜率之积为(bsinα/(acosα+a))(bsinα/(acosα-a))=-1/2
(bsinα)^2/((acosα)^2-a^2)=-(bsinα)^2/(asinα)^2=-(b/a)^2=-1/2
(b/a)^2=1/2
a^2=2b^2,c^2=a^2-b^2=a^2/2
e^2=c^2/a^2=1/2
e=√(1/2)=√2/2
(2)|AP|=|OA|

|AP|^2=|OA|^2

(acosα+a)^2+(bsinα)^2=a^2
(acosα)^2+2a^2cosα+a^2+(bsinα)^2=a^2,将a^2=2b^2带入有:
2b^2(cosα)^2+4b^2cosα+2b^2+(bsinα)^2=2b^2
(cosα)^2+4cosα+1=0
cosα=-2±√3,-2-√3<-1舍去,故cosα=-2+√3
(cosα)^2=7-4√3,(sinα)^2=4√3-6
直线OP的斜率k^2=b^2(sinα)^2/a^2(cosα)^2=(4√3-6)/2(7-4√3)=(2√3-3)/(7-4√3)
k^2=(2√3-3)/(7-4√3)>3等价于(2√3-3)>3(7-4√3)
等价于2√3-3>21-12√3
等价于14√3>24
等价于7√3>12
等价于√147>√144
等价于147>144
显然147>144成立,故k^2>3成立
即有|k|>√3成立
温馨提示:答案为网友推荐,仅供参考
相似回答