请问:什么叫做“分熵学”?

请问:什么叫做“分熵学”?最好讲出方方面面,和它的发展。

熵与温度、压力、焓等一样,也是反映物质内部状态的一个物理量。它不能直接用仪表测量,只能推算出来,所以比较抽象。在作理论分析时,有时用熵的概念比较方便。

在自然界发生的许多过程中,有的过程朝一个方向可以自发地进行,而反之则不行。例如,一个容器的两边装有温度、压力相同的两种气体,在将中间的隔板抽开后,两种气体会自发地均匀混合,但是,要将它们分离则必须消耗功。混合前后虽然温度、压力不变,但是两种状态是不同的,单用温度与压力不能说明它的状态。再如两个温度不同的物体相互接触时,高温物体会自发地将热传给低温物体,最后两个物体温度达到相等。但是,相反的过程不会自发地发生。上述现象说明,自然界发生的一些过程是有一定的方向性的,这种过程叫不可逆过程。过程前后的两个状态是不等价的。用什么物理量来度量这种不等价性呢?通过研究,找到了“熵”这个物理量。

有些过程在理想情况下有可能是可逆的,例如气缸中气体膨胀时举起一个重物做了功,当重物下落时有可能将气体又压缩到原先的状态。根据熵的定义,熵在一个可逆绝热过程的前后是不变的。而对于不可逆的绝热过程,则过程朝熵增大的方向进行。或者说,熵这个物理量可以表示过程的方向性,自然界自发进行的过程总是朝着总熵增加的方向进行,理想的可逆过程总熵保持不变。对上述的两个不可逆过程,它们的终态的熵值必大于初态的熵值。

在制氧机中常遇到的节流阀的节流膨胀过程和膨胀机的膨胀过程均可近似地看成是绝热过程。二者膨胀后压力均降低。但是,前者是不可逆的绝热膨胀,膨胀前后熵值肯定增大。后者在理想情况下膨胀对外作出的功可以等于压缩消耗的功,是可逆绝热膨胀过程,膨胀前后熵值不变,叫等熵膨胀。实际的膨胀机膨胀会有损失,也是不可逆过程,熵也增大。但是,它的不可逆程度比节流过程小,增加的熵值也小。因此,熵的增加值反映了这个绝热过程不可逆程度的大小。在作理论分析计算时,引入熵这个状态参数很为方便。

熵的单位为J/(mol·K)或kJ/(kmol·K)。但是,通常关心的不是熵的数值,而是熵的变化趋势。对实际的绝热膨胀过程,熵必然增加。熵增加的幅度越小,说明损失越小,效率越高。
熵的热力学定义

熵的概念是由德国物理学家克劳伊士于1865年所提出。克氏定义一个热力学系统中熵的增减:在一个可逆性程序里,被用在恒温的热的总数(δQ),并可以公式表示为:

克劳伊士对变量S予以entropy(熵)一名, 该名源自希腊词语τρoπή,意即“转换”。

1923年,德国科学家普朗克来中国讲学用到entropy这个词,胡刚复教授翻译时灵机一动,把“商”字加火旁来意译 entropy,创造了“熵”字。

值得注意的是,这条公式只牵涉到熵的增减,即熵一词只是定义为一个添加的常数。往后,我们会谈到熵的另一个独特的定义。
熵的增减与热力机

克劳修斯认为S是在学习可逆及不可逆热力学转换时的一个重要元素。在往后的章节,我们会探讨达至这个结论的步骤,以及它对热力学的重要性。

热力学转换是指一个系统中热力学属性的转换,例如温度及体积。当一个转换被界定为可逆时,即指在转换的每一步时,系统保持非常接近平衡的状态。否则,该转换即是不可逆的。例如,在一含活塞的管中的气体,其体积可以因为活塞移动而改变。可逆性体积转变是指在进行得极其慢的步骤中,气体的密度经常保持均一。不可逆性体积转变即指在快速的体积转换中,由于太快改变体积所造成的压力波,并造成不稳定状态。可逆性程序亦被称为半静止程序。

热力机是一种可以进行一连串转换而最终能回复开始状态的热力学系统。这一进程被称为一个循环。在某些转换当中,热力机可能会与一种被称之为高温热库的大型系统交换热能,并因为吸收或释放一定的热量而保持固定温度。一个循环所造的结果包括:

1系统所做的功(可以是负数,就像对系统做的功是正数般)
2高温热库之间的热能传递

基于能量守恒定律,高温热库所失的热能正等于热力机所做的功,加上热库所赚取的热能。

当循环中的的每个转换皆是可逆时,该循环是可逆的。这表示它可以反向操作,即热的传递可以相反方向进行,以及所作的功可以正负号调转。最简单的可逆性循环是在两个高温热库之间传递热能的卡诺循环。

熵作为状态函数
热力学第二定律的一种表述方式正是: 一个绝热系统的全部熵不会自动减少.

设想一个绝热系统但和环境保持机械联系,和环境之间不是处于机械平衡状态,可以对环境作功,或接受环境对它作功,如设想在一个密封、绝热的活塞室内,如果室内气体的压力和室外不同,活塞会膨胀或收缩,就会作功。上述结论表明在这种情况下,这个系统的熵会增加(理论上可以持续增加,但实际不会。)在一定的环境下,系统的熵存在一个极大值,这时熵相当于稳定平衡 状态,也就是说不可能和其他平衡状态产生可使熵降低的传热过程,一旦系统达到最高熵状态,不可能再作任何功。
熵的统计学定义,玻耳兹曼原理

1877年,玻耳兹曼发现单一系统中的熵跟构成热力学性质的微观状态数量相关。可以考虑情况如:一个容器内的理想气体。微观状态可以以每个组成的原子的位置及动量予以表达。为了一致性起见,我们只需考虑包含以下条件的微观状态:(i)所有粒子的位置皆在容器的体积范围内;(ii)所有原子的动能总和等于该气体的总能量值。玻耳兹曼并假设:

S = k(lnΩ)

公式中的k是玻耳兹曼常数,Ω则为该宏观状态中所包含之微观状态数量。这个被称为玻耳兹曼原理的假定是统计力学的基础。统计力学则以构成部分的统计行为来描述热力学系统。玻耳兹曼原理指出系统中的微观特性(Ω)与其热力学特性(S)的关系。

跟据玻耳兹曼的定义,熵是一则关于状态的函数。并且因为Ω是一个自然数(1,2,3,...),熵必定是个正数(这是对数的性质)。
熵作为混乱程度的度量

我们可以看出Ω 是一个系统混乱程度的度量,这是有道理的,因为作为有规律的系统,只有有限的几种构型,而混乱的系统可以有无限多个构型。例如,设想有一组10个硬币,每一个硬币有两面,掷硬币时得到最有规律的状态是10个都是正面或10个都是反面,这两种状态都只有一种构型(排列)。反之,如果是最混乱的情况,有5个正面5个反面,排列构型可以有C105 = 252 种。(参见组合数学)

根据熵的统计学定义,热力学第二定律说明一个孤立系统的倾向于增加混乱程度,根据上述硬币的例子可以明白,每一分钟我们随便掷一个硬币,经过一段长时间后,我们检查一下硬币,有“可能”10个都是正面或都是反面,但是最大的可能性是正面和反面的数量接近相等。

我们发现,混乱程度倾向于增加的观念被许多人接受,但容易引起一些错误认识,最主要的是必须明白ΔS ≥ 0 只能用于“孤立”系统,值得注意的是地球并不是一个孤立系统,因为地球不断地从太阳以太阳光的形式接收能量。但能认为宇宙是一个孤立系统,宇宙的混乱程度在不断地增加,可以推测出宇宙最终将达到“热寂”状态,因为(所有恒星)都在以同样方式放散热能,能源将会枯竭,再没有任何可以作功的能源了。
微观计算

在经典统计力学中,微观状态的数量实际是无限的,所以经典系统性质是连续的,例如经典理想气体是定义于所有原子的位置和动量上,是根据实际数量连续计算的。所以要定义Ω,必须要引入对微观状态进行“分类”的方法,对于理想气体,我们认为如果一个原子的位置和动量分别在δx 和 δp 范围之内,它只属于“一种”状态。因为δx 和 δp 的值是任意的,熵没有一个确定值,必须如同上述增加一个常数项。这种微观状态分类方法叫做“组元配分”,相对应于量子力学选择的组元状态。

这种模糊概念被量子力学理论解决了,一个系统的量子状态可以被表述为组元状态的位置,选择作为非破缺的哈密顿函数的典型特征状态。在量子统计力学中,Ω 是作为具有同样热力学性质的基本状态的数量,组元状态的数量是可以计算的,所以我们可以确定Ω 的值。

但是组元状态的确定还是有些随意,决定于微观状态的“组元配分”和经典物理学中不同的微观状态。

这导致了能斯特定理,有时也叫热力学第三定律,就是说系统在绝对温度零度时,熵为一恒定常数,这是因为系统在绝对温度零度时存在基础状态,所以熵就是它基础状态的简并态。有许多系统,如晶格点阵就存在一个唯一的基础状态,所以它在绝对温度零度时的熵为零。(因为ln(1) = 0)。
非热力学的熵

信息论方面的熵,事实上,两种熵之间存在紧密连系,它们之间的关系显示出热力学及信息论之间的深厚关系。

信息熵之所以仍然称为“熵”,是因为他的公式和热力学熵的公式一样,是玻耳兹曼在统计力学领域推导出来的,玻耳兹曼从微观粒子出发,总结熵的宏观性质,不仅信息科学,生物学也利用熵的概念,不过热力学中熵表示的是“系统混乱状态”;信息论中信息熵表示的是信息量;生态学中熵表示的是生物多样性。
在信息论中也有对应的关于信息熵的著名定理――最大信息熵原理。

在很多情况下,对一些随机事件,我们并不了解其概率分布,所掌握的只是与随机事件有关的一个或几个随机变量的平均值。例如,我们只知道一个班的学生考试成绩有三个分数档:80分、90分、100分,且已知平均成绩为90分。显然在这种情况下,三种分数档的概率分布并不是唯一的。因为在下列已知条件限制下

P1*80+P2*90+P3*100=90 (平均成绩)
P1+P2+P3=1 (概率归一化条件)

有无限多组解,该选哪一组解呢?即如何从这些相容的分布中挑选出“最佳的”、“最合理”的分布来呢?这个挑选标准就是最大信息熵原理。

按最大信息熵原理,我们从全部相容的分布中挑选这样的分布,它是在某些约束条件下(通常是给定的某些随机变量的平均值)使信息熵达到极大值的分布。这一原理是由杨乃斯提出的。这是因为信息熵取得极大值时对应的一组概率分布出现的概率占绝对优势。从理论上可以证明这一点。

在我们把熵看作是计量不确定程度的最合适的标尺时,我们就基本已经认可在给定约束下选择不确定程度最大的那种分布作为随机变量的分布。因为这种随机分布是最为随机的,是主观成分最少,把不确定的东西作最大估计的分布。

任何物质系统除了都受到或多或少的外部约束外,其内部总是具有一定的自由度,这种自由度导致系统内的各元素处于不同的状态。而状态的多样性,状态的丰富程度(混乱程度、复杂程度)的定量计量标尺就是熵,熵最大就是事物状态的丰富程度自动达到最大值。换句话说,事物总是在约束下争取(或呈现)最大的自由权,我们把这看作是自然界的根本原则。

在给定的约束条件下,由最大信息熵原理求“最佳”概率分布,就是求解条件极值问题。在某些场合,常用拉格朗日乘子法来确定此分布。
一般地,拉格朗日乘子法的法则可叙述如下:欲求n元函数f(x1,x2,…,xn)在m个约束条件
φ1(X1,X2,…,Xn)=0
φ2(X1,X2,…,Xn)=0
……
φm(X1,X2,…,Xn)=0
(令这些方程为方程组(1))

下的条件极值,可用常数1,λ1,λ2,…,λm依次乘f,φ1,φ2,…,φm把结果加起来,得函数
F(X1,X2,…,Xn)=f+λ1φ1+λ2φ2+…+λmφm (*)
然后列出 无约束条件时具有极值的必要条件;也就是方程(*)对X1,X2,…,Xn 求偏导,等于0,得到方程组(2)。这个方程组太麻烦,就不写了。
这n个方程(2)与m个方程(1)联立解出n+m个未知数x1,x2,…,xn , 。而其中x1,x2,…,xn就是可能为极值点的坐标,称为驻点。
从信息论中发展起来的最大信息熵原理,使人们开始把统计物理看成是信息论的特例。这使我们看到熵概念的强大生命力,也看到了熵概念和熵原理的重大意义。
温馨提示:答案为网友推荐,仅供参考
第1个回答  2008-11-24
、克劳修斯首次从宏观角度提出熵概念,其计算公式为:S=Q/T ,(计算熵差时,式中应为△Q)

2、波尔兹曼又从微观角度提出熵概念,公式为:S=klnΩ,Ω是微观状态数,通常又把S当着描述混乱成度的量。
第2个回答  2008-12-02
1、克劳修斯首次从宏观角度提出熵概念,其计算公式为:S=Q/T ,(计算熵差时,式中应为△Q)
2、波尔兹曼又从微观角度提出熵概念,公式为:S=klnΩ,Ω是微观状态数,通常又把S当着描述混乱成度的量。
3、笔者针对Ω不易理解、使用不便的现状,研究认为Ω与理想气体体系的宏观参量成正比,即:Ω(T)=(T/εT)3/2 , Ω(V)=V/εV,得到理想气体的体积熵为SV=klnΩv=klnV,温度熵为ST=klnΩT=(3/2)klnT ,计算任意过程的熵差公式为△S=(3/2)kln(T'/T)+kln(V'/V),这微观与宏观关系式及分熵公式,具有易于理解、使用方便的特点,有利于教和学,可称为第三代熵公式。
上述三代熵公式,使用的物理量从形式上看具有"直观→抽象→直观"的特点,我们认为这不是概念游戏,是对熵概念认识的一次飞跃。

参考资料:百科

第3个回答  2008-11-17
1、克劳修斯首次从宏观角度提出熵概念,其计算公式为:S=Q/T ,(计算熵差时,式中应为△Q)

2、波尔兹曼又从微观角度提出熵概念,公式为:S=klnΩ,Ω是微观状态数,通常又把S当着描述混乱成度的量。

3、笔者针对Ω不易理解、使用不便的现状,研究认为Ω与理想气体体系的宏观参量成正比,即:Ω(T)=(T/εT)3/2 , Ω(V)=V/εV,得到理想气体的体积熵为SV=klnΩv=klnV,温度熵为ST=klnΩT=(3/2)klnT ,计算任意过程的熵差公式为△S=(3/2)kln(T'/T)+kln(V'/V),这微观与宏观关系式及分熵公式,具有易于理解、使用方便的特点,有利于教和学,可称为第三代熵公式。
第4个回答  2008-11-17
熵理论有两个版本:热力学熵与玻耳兹曼熵;
无论微观的玻耳兹曼熵还是宏观的克劳修斯熵,它们都正比于宏观状态概率的对数,自然界过程的自发倾向是从概率小的宏观状态向概率大的宏观状态过渡。那么,这一切又有什么直观的意义呢?我们说:熵高,或者说宏观态的概率大,意味着“混乱”和“分散”;熵低,或者说宏观态的概率小,意味着“整齐”和“集中”。用物理学的语言,前者叫做无序(disorder),后者叫做有序(order)。例如,固体熔化为液体是熵增加的过程,固体的结晶态要比液态整齐有序;液体蒸发为气体是熵增加得更多的过程,气态比液态混乱和分散得多。又如,把一碗沙子搀到一碗米里,和两种气体相互扩散是一样的,熵增加了,这意味着事情被搞得一塌糊涂,乱糟糟的不可收拾。再者,两种气体化合为一种气体,熵因摩尔数减少了而减少,这意味着集中;反过来,一种气体分解为两种气体,熵因摩尔数增加了而增加,这意味着分散。自由膨胀从集中到分散,功变热从有序到无序,都是熵增加的过程。热量从高温传到低温熵增加意味着什么?能量的分散和退降!卡诺定理和热力学第二定律告诉我们,存在着温度差(这意味着能量适当地集中)才可能得到有用功。温度均衡了,能量的数量虽然没变,但单一热源不能作出有用的功来。这就是所谓“能量退降(即能量退化贬值,degradation of energy)”的含义。

状态有序还是无序,有时并非一眼能够看出。许多字符排列成一长串,看不出什么规律,你认为它是无序的,没有信息量,熵值很高。但这字符串也许是用你不懂的语言所写的一句话呢!果真如此,则它是有序的,传达了一定的信息,熵值较低。DNA就是这类字符串,我们不能因为尚未读懂它而认为它是无序的,其实它是生命过程的中枢,高度有序,内含大量的信息,熵值非常低!

数据压缩不仅起源于 40 年代由 Claude Shannon 首创的信息论,而且其基本原理即信息究竟能被压缩到多小,至今依然遵循信息论中的一条定理,这条定理借用了热力学中的名词“熵”( Entropy )来表示一条信息中真正需要编码的信息量:
考虑用 0 和 1 组成的二进制数码为含有 n 个符号的某条信息编码,假设符号 Fn 在整条信息中重复出现的概率为 Pn,则该符号的熵也即表示该符号所需的位数位为:

En = - log2( Pn )

整条信息的熵也即表示整条信息所需的位数为:E = ∑En

举个例子,对下面这条只出现了 a b c 三个字符的字符串:

aabbaccbaa

字符串长度为 10,字符 a b c 分别出现了 5 3 2 次,则 a b c 在信息中出现的概率分别为 0.5 0.3 0.2,他们的熵分别为:

Ea = -log2(0.5) = 1

Eb = -log2(0.3) = 1.737

Ec = -log2(0.2) = 2.322

整条信息的熵也即表达整个字符串需要的位数为:

E = Ea * 5 + Eb * 3 + Ec * 2 = 14.855 位

回想一下如果用计算机中常用的 ASCII 编码,表示上面的字符串我们需要整整 80 位呢!现在知道信息为什么能被压缩而不丢失原有的信息内容了吧。简单地讲,用较少的位数表示较频繁出现的符号,这就是数据压缩的基本准则。
第5个回答  2008-11-30
你去问老师