氧解离曲线的主要影响因素及其作用

氧解离曲线的主要影响因素及其作用

影响因素:

有多种因素,包括PO2、Hb本身的性质、含量、pH、PCO2、温度、2,3-DPG和CO等。

当pH降低,PCO2升高,温度升高,2,3-DPG增高,氧离曲线右移;

当pH升高,PCO2、温度、2,3-DPG降低和CO中毒,曲线左移。

2,3-二磷酸甘油酸:红细胞中含有的2,3-二磷酸甘油酸在调节Hb与O2的亲和力中具有重要作用。2,3-DPG浓度升高时,Hb对O2的亲和力降低,氧解离曲线右移;反之,曲线左移。

此外,红细胞膜对2,3-DPG的通透性较低,当红细胞内2,3-二磷酸甘油酸生成增多时,还可提高细胞内H+浓度,进而通过波尔效应降低Hb对O2的亲和力。

氧的运输

血液中的O2以溶解的和结合的两种形式存在。溶解的量极少,仅占血液总O2含量的约1.5%,结合的占 98.5%左右。O2的结合形式是氧合血红蛋白(HbO2)。血红蛋白(hemoglobin,Hb)是红细胞内的色蛋白,它的分子结构特征使之成为极好的运O2工具。Hb还参与CO2的运输,所以在血液气体运输方面Hb占极为重要的地位。

以上内容参考:百度百科-氧解离曲线

温馨提示:答案为网友推荐,仅供参考
第1个回答  2021-06-20

氧解离曲线的影响因素及其作用

一、氧分压

1、氧分压由60降至40mmHg,血氧饱和度由90%降至75%。即每100ml血液流经组织释放氧5ml。反映安静状态下机体的供氧情况。

2、氧分压由40降至15mmHg,此时血氧含量仅4.4ml,每100ml血液流经组织释放氧15ml。是机体高强度运动时的供氧情况,显示血液供氧的储备能力。

二、温度、氢离子、二氧化碳浓度及2,3-二磷酸甘油酸浓度

1、二氧化碳分压上升、氢离子浓度上升(pH下降)、温度上升、二磷酸甘油酸增多,可导致氧与血红蛋白亲和力下降,氧解离曲线向右下方移位,有利于氧气的释放,增加氧气的利用。

2、二氧化碳分压下降、氢离子浓度下降(pH上升)、温度下降、二磷酸甘油酸减少,可导致氧与血红蛋白亲和力上升,氧解离曲线向左上方移位,有利于氧气和血红蛋白结合。


氧解离曲线的特点和生理意义

1、氧解离曲线的上段,曲线较平坦,相当于PO₂由13.3kPa(100mmHg),变化到8.0kPa(60mmHg)时,说明在这段期间PO₂的变化对Hb氧饱和度影响不大,只要PO₂不低于8.0kPa(60mmHg),Hb氧饱和度仍能保持在90%以上,血液仍有较高的载氧能力,不致发生明显的低氧血症

2、氧解离曲线的中段,该段曲线较陡,是HbO₂释放O₂的部分。表示PO₂在8.0~5.3kPa(60~40mmHg)范围内稍有下降,Hb氧饱和度下降较大,进而释放大量的氧,满足机体对O₂的需要。

3、氧离曲线的下段,相当于PO₂5.3~2.0kPa(40~15mmHg),曲线最陡,表示PO₂稍有下降,Hb氧饱和度就可以大大下降,使O₂大量释放出来,以满足组织活动增强时的需要。因此,该曲线代表了O₂的贮备。

以上内容参考 百度百科--氧离曲线

本回答被网友采纳
第2个回答  推荐于2018-08-21
定义:
表示氧分压与血氧饱和度关系的曲线,以氧分压(PO2)值为横坐标,相应的血氧饱和度为纵坐标,称为氧解离曲线(oxygen dissociation curve),或简称氧离曲线。

影响因素:
有多种因素,包括PO2、Hb本身的性质、含量、pH、PCO2、温度、2,3-DPG和CO等。
1)当pH降低,PCO2升高,温度升高,2,3-DPG增高,氧离曲线右移;
2)当pH升高,PCO2、温度、2,3-DPG降低和CO中毒,曲线左移。

详解:
Hb与O2的结合和解离可受多种因素影响,使氧离曲线的位置偏移,亦即使Hb对O2的亲和力发生变化。通常用P50表示Hb对O2的亲和力。P50是使Hb氧饱和度达50%时的PO2,正常为3.52kPa(26.5mmHg)。P50增大,表明Hb对O2的亲和力降低,需更高的PO2才能达到50%的Hb氧饱和度,曲线右移;P50降低,指示Hb对O2的亲和力增加,达50%Hb氧饱和度所需的PO2降低,曲线左移。影响Hb与O2亲和力或P50的因素有血液的Ph、PCO2、温度和有机磷化物。

1.Hb与PCO2的影响pH降低或升PCO2升高,Hb对O2的亲和力降低,P50增大,曲线右移;pH升高或PCO2降低,Hb对O2的亲和力增加,P50降低,曲线左移。酸度对Hb氧亲和力的这种影响称为波尔效应(Bohreffect)。波尔效应的机制,与pH改变时hb构型变化有关。酸度增加时,H+与Hb多肽链某些氨基酸残基的基团结合,促进盐键形成,促使Hb分子构型变为T型,从而降低了对O2的亲和力,曲线右移;酸度降低时,则促使盐键断裂放出H+,Hb变为R型,对O2的亲和力增加,曲线左移。PCO2的影响,一方面是通过PCO2改变时,pH也改变间接效应,一方面也通过CO2与Hb结合而直接影响Hb与O2的亲和力,不过后一效应极小。 波尔效应有重要的生理意义,它既可促进肺毛细血管的氧合,又有利于组织毛细血管血液释放O2.当血液流经肺时,CO2从血液向肺泡扩散,血液PCO2下降,[H+]也降低,均使Hb对O2的亲和力增加,曲线左移,在任一PO2下Hb氧饱和度均增加,血液运O2量增加。当血液流经组织时,CO2从组织扩散进入血液,血液PCO2和[H+]升高,Hb对O2的亲和力降低,曲线右移,促使HbO2解离向组织释放更多的O2.
2.温度的影响温度升高,氧离曲线右移,促使O2释放;温度降低,曲线左移,不利于O2的释放。临床低温麻醉手术时应考虑到这一点。温度对氧离曲线的影响,可能与温度影响了H+活度有关。温度升高H+活度增加,降低了Hb对O2的亲和力。当组织代谢活跃是局部组织温度升高,CO2和酸性代谢产物增加,都有利于Hb02解离,活动组织可获得更多的O2以适应其代谢的需要。
3.2,3-二磷酸甘油酸红细胞中含有很多有机磷化物,特别是2,3-二磷酸甘油酸(2.3-diphospoglycericacid,2,3-DPG),在调节Hb和O2的亲和力中起重要作用。2,3-DPG浓度升高,Hb对O2亲和力降低,氧离曲线右移:2,3-DPG浓度升降低,Hb对O2的亲和力增加,曲线左移。其机制可能是2,3-DPG与Hbβ链形成盐键,促使Hb变成T型的缘故。此外,2,3-DPG可以提高[H+],由波尔效应来影响Hb对O2的亲和力。
2,3-DPG是红细胞无氧糖酵解的产物。高山缺O2,糖酵解加强,红细胞2,3-DPG增加,氧离曲线右移,有利于O2的释放,曾认为这可能是能低O2适应的重要机制。可是,这时肺泡PO2也降低,红细胞内过多的2,3-DPG也妨碍了Hb与O2的结合。所以缺O2时,2,3-DPG使氧离曲线右移是否有利,是值得怀疑的。
4.Hb自身性质的影响除上述因素外,Hb与O2的结合还为其自身性质所影响。Hb的Fe2+氧化成Fe3+,失去运O2能力。胎儿Hb和O2的亲和力大,有助于胎儿血液流经胎盘时从母体摄取O2.异常Hb也降低运O2功能。CO与Hb结合,占据了O2的结合位点,HbO2下降。CO与Hb的亲和力是O2的250倍,这意味着极低的PCO,CO就可以从HbO2中取代O2,阻断其结合位点。此外,CO还有一极为有害的效应,即当CO与Hb分子中某个血红素结合后,将增加其余3个血红素对O2的亲和力,使氧离曲线左移,妨碍O2的解离。所以CO中毒既妨碍Hb与O2的结合,又妨碍O2的解离,危害极大。本回答被网友采纳
第3个回答  2018-03-17
定义:
表示氧分压与血氧饱和度关系的曲线,以氧分压(PO2)值为横坐标,相应的血氧饱和度为纵坐标,称为氧解离曲线(oxygen dissociation curve),或简称氧离曲线。

影响因素:
有多种因素,包括PO2、Hb本身的性质、含量、pH、PCO2、温度、2,3-DPG和CO等。
1)当pH降低,PCO2升高,温度升高,2,3-DPG增高,氧离曲线右移;
2)当pH升高,PCO2、温度、2,3-DPG降低和CO中毒,曲线左移。

详解:
Hb与O2的结合和解离可受多种因素影响,使氧离曲线的位置偏移,亦即使Hb对O2的亲和力发生变化。通常用P50表示Hb对O2的亲和力。P50是使Hb氧饱和度达50%时的PO2,正常为3.52kPa(26.5mmHg)。P50增大,表明Hb对O2的亲和力降低,需更高的PO2才能达到50%的Hb氧饱和度,曲线右移;P50降低,指示Hb对O2的亲和力增加,达50%Hb氧饱和度所需的PO2降低,曲线左移。影响Hb与O2亲和力或P50的因素有血液的Ph、PCO2、温度和有机磷化物。

1.Hb与PCO2的影响pH降低或升PCO2升高,Hb对O2的亲和力降低,P50增大,曲线右移;pH升高或PCO2降低,Hb对O2的亲和力增加,P50降低,曲线左移。酸度对Hb氧亲和力的这种影响称为波尔效应(Bohreffect)。波尔效应的机制,与pH改变时hb构型变化有关。酸度增加时,H+与Hb多肽链某些氨基酸残基的基团结合,促进盐键形成,促使Hb分子构型变为T型,从而降低了对O2的亲和力,曲线右移;酸度降低时,则促使盐键断裂放出H+,Hb变为R型,对O2的亲和力增加,曲线左移。PCO2的影响,一方面是通过PCO2改变时,pH也改变间接效应,一方面也通过CO2与Hb结合而直接影响Hb与O2的亲和力,不过后一效应极小。 波尔效应有重要的生理意义,它既可促进肺毛细血管的氧合,又有利于组织毛细血管血液释放O2.当血液流经肺时,CO2从血液向肺泡扩散,血液PCO2下降,[H+]也降低,均使Hb对O2的亲和力增加,曲线左移,在任一PO2下Hb氧饱和度均增加,血液运O2量增加。当血液流经组织时,CO2从组织扩散进入血液,血液PCO2和[H+]升高,Hb对O2的亲和力降低,曲线右移,促使HbO2解离向组织释放更多的O2.
2.温度的影响温度升高,氧离曲线右移,促使O2释放;温度降低,曲线左移,不利于O2的释放。临床低温麻醉手术时应考虑到这一点。温度对氧离曲线的影响,可能与温度影响了H+活度有关。温度升高H+活度增加,降低了Hb对O2的亲和力。当组织代谢活跃是局部组织温度升高,CO2和酸性代谢产物增加,都有利于Hb02解离,活动组织可获得更多的O2以适应其代谢的需要。
3.2,3-二磷酸甘油酸红细胞中含有很多有机磷化物,特别是2,3-二磷酸甘油酸(2.3-diphospoglycericacid,2,3-DPG),在调节Hb和O2的亲和力中起重要作用。2,3-DPG浓度升高,Hb对O2亲和力降低,氧离曲线右移:2,3-DPG浓度升降低,Hb对O2的亲和力增加,曲线左移。其机制可能是2,3-DPG与Hbβ链形成盐键,促使Hb变成T型的缘故。此外,2,3-DPG可以提高[H+],由波尔效应来影响Hb对O2的亲和力。
2,3-DPG是红细胞无氧糖酵解的产物。高山缺O2,糖酵解加强,红细胞2,3-DPG增加,氧离曲线右移,有利于O2的释放,曾认为这可能是能低O2适应的重要机制。可是,这时肺泡PO2也降低,红细胞内过多的2,3-DPG也妨碍了Hb与O2的结合。所以缺O2时,2,3-DPG使氧离曲线右移是否有利,是值得怀疑的。
4.Hb自身性质的影响除上述因素外,Hb与O2的结合还为其自身性质所影响。Hb的Fe2+氧化成Fe3+,失去运O2能力。胎儿Hb和O2的亲和力大,有助于胎儿血液流经胎盘时从母体摄取O2.异常Hb也降低运O2功能。CO与Hb结合,占据了O2的结合位点,HbO2下降。CO与Hb的亲和力是O2的250倍,这意味着极低的PCO,CO就可以从HbO2中取代O2,阻断其结合位点。此外,CO还有一极为有害的效应,即当CO与Hb分子中某个血红素结合后,将增加其余3个血红素对O2的亲和力,使氧离曲线左移,妨碍O2的解离。所以CO中毒既妨碍Hb与O2的结合,又妨碍O2的解离,危害极大。
第4个回答  2020-12-09